Preferential formation of MT1/MT2 melatonin receptor heterodimers with distinct ligand interaction properties compared with MT2 homodimers.

نویسندگان

  • Mohammed A Ayoub
  • Angélique Levoye
  • Philippe Delagrange
  • Ralf Jockers
چکیده

Heterodimerization has been documented for several members of the G protein-coupled receptor (GPCR) superfamily, including the closely related MT(1) and MT(2) melatonin receptors. However, the relative abundance of hetero-versus homodimers and the specific properties, which can be attributed to each form, are difficult to determine. Using a bioluminescence resonance energy transfer (BRET) donor saturation assay, we show that half-maximal MT(1)/MT(2) heterodimer formation is reached for expression levels as low as approximately 4000 receptors per cell. The relative propensity of MT(1) homodimer and MT(1)/MT(2) heterodimer formation are similar, whereas that for the MT(2) homodimer formation is 3- to 4-fold lower. These data indicate that both the relative expression level of each receptor isoform and the affinities between monomers may determine the actual proportion of homo- and heterodimers. The specific interaction of ligands with the MT(1)/MT(2) heterodimer was studied using a BRET-based assay as a readout for the conformational changes of the heterodimer. An MT(1)/MT(2) heterodimer-specific profile and ligands selective for the MT(1)/MT(2) heterodimer compared with the MT(2) homodimer could be identified. Classic radioligand binding and BRET studies suggest that heterodimers contain two functional ligand binding sites that maintain their respective selectivity for MT(1) and MT(2) ligands. Occupation of either binding site is sufficient to induce a conformational change within the heterodimer. Taken together, these results show that the probability of GPCR heterodimer formation may be equal to or even higher than that of the corresponding homodimers and that specific properties of heterodimers can be revealed using a BRET-based ligand/receptor interaction assay.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preferential Formation of MT1/MT2 Melatonin Receptor Heterodimers with Distinct Ligand Interaction Properties Compared with MT2 Homodimers □S

Heterodimerization has been documented for several members of the G protein-coupled receptor (GPCR) superfamily, including the closely related MT1 and MT2 melatonin receptors. However, the relative abundance of heteroversus homodimers and the specific properties, which can be attributed to each form, are difficult to determine. Using a bioluminescence resonance energy transfer (BRET) donor satu...

متن کامل

Melatonin receptors, heterodimerization, signal transduction and binding sites: what's new?

Melatonin is a neurohormone that has been claimed to be involved in a wide range of physiological functions. Nevertheless, for most of its effects, the mechanism of action is not really known. In mammals, two melatonin receptors, MT1 and MT2, have been cloned. They belong to the G-protein-coupled receptor (GPCR) superfamily. They share some specific short amino-acid sequences, which suggest tha...

متن کامل

Role of melatonin receptors in the effect of estrogen on brain edema, intracranial pressure and expression of aquaporin 4 after traumatic brain injury

Objective(s): Traumatic brain injury (TBI) is one of the most common causes of death and disability in modern societies. The role of steroids and melatonin is recognized as a neuroprotective factor in traumatic injuries. This study examined the role of melatonin receptors in the neuroprotective effects of estrogen. Materials and Methods: Seventy female ovariectomized Wistar rats were divided in...

متن کامل

Regulation of bone mass through pineal‐derived melatonin‐MT2 receptor pathway

Tryptophan, an essential amino acid through a series of enzymatic reactions gives rise to various metabolites, viz. serotonin and melatonin, that regulate distinct biological functions. We show here that tryptophan metabolism in the pineal gland favors bone mass accrual through production of melatonin, a pineal-derived neurohormone. Pineal gland-specific deletion of Tph1, the enzyme that cataly...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular pharmacology

دوره 66 2  شماره 

صفحات  -

تاریخ انتشار 2004